Peer-reviewed publications

Last update: 20 December,  2020.


Bach LT, Paul AJ, Boxhammer T, von der Esch E, Graco M, Schulz KG, et al. Factors controlling plankton community production, export flux, and particulate matter stoichiometry in the coastal upwelling system off Peru. Biogeosciences. 2020; 4831–4852. doi:10.5194/bg-2020-35 // LINK 

Paul AJ, Bach LT. Universal response pattern of phytoplankton growth rates to increasing CO2. New Phytol. 2020; doi:10.1111/nph.16806 // LINK 

Taucher J, Boxhammer T, Bach LT, Paul AJ, Schartau M, Stange P, et al. Changing carbon-to-nitrogen ratios of organic-matter export under ocean acidification. Nat Clim Chang. 2020; doi:10.1038/s41558-020-00915-5 // LINK 

Haunost M, Riebesell U, Bach LT. The Calcium Carbonate Shell of Emiliania huxleyi Provides Limited Protection Against Viral Infection. Front Mar Sci. 2020;7: 1–13. doi:10.3389/fmars.2020.530757 // LINK 

Hopwood MJ, Sanchez N, Polyviou D, Leiknes Ø, Gallego-Urrea JA, Achterberg EP, Ardelan MV, Aristegui J, Bach LT, et al. Experiment design and bacterial abundance control extracellular H2O2 concentrations during four series of mesocosm experiments. Biogeosciences. 2020;17: 1309–1326. doi:10.5194/bg-17-1309-2020 // LINK

Faucher G, Riebesell U, Bach LT. Can morphological features of coccolithophores serve as a reliable proxy to reconstruct environmental conditions of the past? Clim Past. 2020;16: 1007–1025. doi:10.5194/cp-16-1007-2020 // LINK

Tames-Espinosa M, Martínez I, Romero-Kutzner V, Coca J, Algueró-Muñiz M, Horn HG, et al. Metabolic Responses of Subtropical Microplankton After a Simulated Deep-Water Upwelling Event Suggest a Possible Dominance of Mixotrophy Under Increasing CO2 Levels. Front Mar Sci. 2020;7: 1–15. doi:10.3389/fmars.2020.00307 // LINK

Hopwood MJ, Sanchez N, Polyviou D, Leiknes Ø, Gallego-Urrea JA, Achterberg EP, Ardelan MV, Aristegui J, Bach LT et al. Experiment design and bacterial abundance control extracellular H2O2 concentrations during four series of mesocosm experiments. Biogeosciences. 2020;17: 1309–1326. doi:10.5194/bg-17-1309-2020 // LINK


Bach LT, Gill SJ, Rickaby REM, Gore S, Renforth P. CO2 Removal With Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems. Front Clim. 2019;1: 1–21. doi:10.3389/fclim.2019.00007 // LINK

Bach LT, Stange P, Taucher J, Achterberg EP, AlgueróMuñiz M, Horn H, et al. The influence of plankton community structure on sinking velocity and remineralization rate of marine aggregates. Global Biogeochem Cycles. 2019; 2019GB006256. doi:10.1029/2019GB006256 // LINK

Bach LT, Taucher J. CO2 effects on diatoms: A Synthesis of more than a decade of ocean acidification experiments with natural communities. Ocean Sci. 2019;15: 1159–1175. doi:10.5194/os-15-1159-2019 // LINK (highlight article by the European Geosciences Union)

Bach LT, Hernández-Hernández N, Taucher J, Spisla C, Sforna C, et al. Effects of Elevated CO2 on a Natural Diatom Community in the Subtropical NE Atlantic. Front Mar Sci. 2019;6: 1–16. doi:10.3389/fmars.2019.00075 // LINK

Hopwood MJ, Carroll D, Höfer J, Achterberg EP, Meire L, Le Moigne FAC, Bach LT, et al. Highly variable iron content modulates iceberg-ocean fertilisation and potential carbon export. Nat Commun. 2019;10: 5261. doi:10.1038/s41467-019-13231-0 // LINK

Wohlrab S, John U, Klemm K, Eberlin T, Forsberg Grivogiannis AM, Krock B, Frickenhaus S, Bach LT, et al. Ocean acidification increases domoic acid contents during a spring to summer succession of coastal phytoplankton. Harmful Algae. 2019; 10.1016/j.hal.2019.101697// LINK

Algueró-Muñiz M, Horn HG, Alvarez-fernandez S, Spisla C, Aberle N, Bach LT, et al. Analyzing the Impacts of Elevated-CO2 Levels on the Development of a Subtropical Zooplankton Community During Oligotrophic Conditions and Simulated Upwelling. Front Mar Sci. 2019;6: 1–18. doi:10.3389/fmars.2019.00061 // LINK

Esposito M, Achterberg EP, Bach LT, Connelly DP, Esposito M. Application of Stable Carbon Isotopes in a Subtropical North Atlantic MesocosmStudy: A New Approach to Assess CO2 Effects on the Marine Carbon Cycle. Front Mar Sci. 2019;6: 1–17. doi:10.3389/fmars.2019.00616 // LINK


Bach LT, Lohbeck KT, Reusch TBH, Riebesell U. Rapid evolution of highly variable competitive abilities in a key phytoplankton species. Nat Ecol Evol. 2018;2: 611–613. doi:10.1038/s41559-018-0474-x // LINK

Zhang Y, Bach LT, Lohbeck KT, Schulz KG, Listmann L, Klapper R, et al. Population-specific responses in physiological rates of Emiliania huxleyi to a broad CO2 range. Biogeosciences. 2018;15: 3691–3701. doi:10.5194/bg-15-3691-2018 // LINK

Archer SD, Suffrian K, Posman KM, Bach LT, Matrai PA, Countway PD, et al. Processes That Contribute to Decreased Dimethyl Sulfide Production in Response to Ocean Acidification in Subtropical Waters. Front Mar Sci. 2018;5: 1–19. doi:10.3389/fmars.2018.00245 // LINK

Nausch M, Achterberg EP, Bach LT, Brussaard CPD, Crawfurd KJ, Fabian J, et al. Concentrations and Uptake of Dissolved Organic Phosphorus Compounds in the Baltic Sea. Front Mar Sci. 2018;5. doi:10.3389/fmars.2018.00386 // LINK

Riebesell U, Aberle-Malzahn N, Achterberg EP, Algueró-Muñiz M, Alvarez-Fernandez S, Arístegui J, Bach LT, et al. Toxic algal bloom induced by ocean acidification disrupts the pelagic food web. Nat Clim Chang. 2018; doi:10.1038/s41558-018-0344-1 // LINK

Alvarez-Fernandez S, Bach LT, Taucher J, Riebesell U, Sommer U, Aberle N, et al. Plankton responses to ocean acidification: The role of nutrient limitation. Prog Oceanogr. 2018;165: 11–18. doi:10.1016/j.pocean.2018.04.006 // LINK

Hernández-Hernández N, Bach LT, Montero MF, Taucher J, Baños I, Guan W, et al. High CO2 Under Nutrient Fertilization Increases Primary Production and Biomass in Subtropical Phytoplankton Communities: A Mesocosm Approach. Front Mar Sci. 2018;5: 1–14. doi:10.3389/fmars.2018.00213 // LINK

Sett S, Schulz KG, Bach LT, Riebesell U. Shift towards larger diatoms in a natural phytoplankton assemblage under combined high-CO2 and warming conditions. J. Plankton Res. 2018;40: 391–406. doi:10.1093/plankt/fby018 // LINK

Boxhammer T, Taucher J, Bach LT, Achterberg EP, Algueró-Muñiz M, Bellworthy J, et al. Enhanced transfer of organic matter to higher trophic levels caused by ocean acidification and its implications for export production: A mass balance approach. PLoS One. 2018;13: 1–25. doi:10.1371/journal.pone.0197502 // LINK

Taucher J, Stange P, Algueró-Muñiz M, Bach LT, Nauendorf A, Kolzenburg R, et al. In situ camera observations reveal major role of zooplankton in modulating marine snow formation during an upwelling-induced plankton bloom. Prog Oceanogr. 2018;164: 75–88. doi:10.1016/j.pocean.2018.01.004 // LINK

Sswat M, Stiasny MH, Taucher J, Algueró-Muñiz M, Bach LT, Jutfelt F, et al. Food web changes under ocean acidification promote herring larvae survival. Nat Ecol Evol.  2018;2: 1–5. doi:10.1038/s41559-018-0514-6 // LINK

Stange P, Taucher J, Bach LT, Algueró-Muñiz M, Horn HG, Krebs L, et al. Ocean Acidification-Induced Restructuring of the Plankton Food Web Can Influence the Degradation of Sinking Particles. Front Mar Sci. 2018;5: 1–13. doi:10.3389/fmars.2018.00140 // LINK


Bach LT, Alvarez-Fernandez S, Hornick T, Stuhr A, Riebesell U. Simulated ocean acidification reveals winners and losers in coastal phytoplankton. PLoS One. 2017;12: e0188198. doi:10.1371/journal.pone.0188198 // LINK

Faucher G, Hoffmann L, Bach LT, Bottini C, Erba E, Riebesell U. Impact of trace metal concentrations on coccolithophore growth and morphology: Laboratory simulations of Cretaceous stress. Biogeosciences. 2017;14: 3603–3613. doi:10.5194/bg-14-3603-2017 // LINK

Singh A, Bach LT, Fischer T, Hauss H, Kiko R, Paul AJ, et al. Niche construction by non-diazotrophs for N2 fixers in the eastern tropical North Atlantic Ocean. Geophys Res Lett. 2017;44: 2017GL074218. doi:10.1002/2017GL074218 // LINK

Algueró-Muñiz M, Alvarez-Fernandez S, Thor P, Bach LT, Esposito M, Horn HG, et al. Ocean acidification effects on mesozooplankton community development: Results from a long-term mesocosm experiment. PLoS One. 2017;12: e0175851. doi:10.1371/journal.pone.0175851 // LINK

Taucher J, Bach LT, Boxhammer T, Nauendorf A, Achterberg EP, Algueró-Muñiz M, et al. Influence of Ocean Acidification and Deep Water Upwelling on Oligotrophic Plankton Communities in the Subtropical North Atlantic: Insights from an In situ Mesocosm Study. Front Mar Sci. 2017;4: 1–18. doi:10.3389/fmars.2017.00085 // LINK

Schulz KG, Bach LT, Bellerby R, Bermudez R, Boxhammer T, Czerny J, et al. Phytoplankton blooms at increasing levels of atmospheric carbon dioxide: experimental evidence for negative effects on prymnesiophytes and positive on small picoeukaryotes. Front Mar Sci. 2017;4: 1–18. doi:10.3389/fmars.2017.00064 // LINK

Eberlein T, Wohlrab S, Rost B, John U, Bach LT, Riebesell U, et al. Effects of ocean acidification on primary production in a coastal North Sea phytoplankton community. PLoS One. 2017;12: e0172594. doi:10.1371/journal. pone.0172594 // LINK

Taucher J, Haunost M, Boxhammer T, Bach LT, Algueró-Muñiz M, Riebesell U. Influence of ocean acidification on plankton community structure during a winter-to-summer succession: An imaging approach indicates that copepods can benefit from elevated CO2 via indirect food web effects. PLoS One. 2017;12: e0169737. doi:10.1371/journal.pone.0169737 // LINK

Stange P, Bach LT, Le Moigne FAC, Taucher J, Boxhammer T, Riebesell U. Quantifying the time lag between organic matter production and export in the surface ocean: Implications for estimates of export efficiency. Geophys Res Lett. 2017;44: 268–276. doi:10.1002/2016GL070875 // LINK

Hornick T, Bach LT, Crawfurd KJ, Spilling K, Achterberg EP, Woodhouse JN, et al. Ocean acidification impacts bacteria–phytoplankton coupling at low-nutrient conditions. Biogeosciences. 2017;14: 1–15. doi:10.5194/bg-14-1-2017 // LINK

Riebesell U, Bach LT, Bellerby RGJ, Monsalve JRB, Boxhammer T, Czerny J, et al. Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification. Nat Geosci. 2017;10: 19–23. doi:10.1038/NGEO2854 // LINK

Horn HG, Sander N, Stuhr A, Algueró-Muñiz M, Bach LT, Löder MGJ, et al. Low CO2 sensitivity of microzooplankton communities in the Gullmar Fjord, Skagerrak: Evidence from a long-term mesocosm study. PLoS One. 2016;11: e0165800. doi:10.1371/journal.pone.0165800 // LINK

Lischka S, Bach LT, Schulz KG, Riebesell U. Ciliate and mesozooplankton community response to increasing CO2 levels in the Baltic Sea: insights from a large-scale mesocosm experiment. Biogeosciences. 2017;14: 447–466. doi:10.5194/bg-14-447-2017 // LINK


Bach LT, Boxhammer T, Larsen A, Hildebrandt N, Schulz KG, Riebesell U. Influence of plankton community structure on the sinking velocity of marine aggregates. Global Biogeochem Cycles. 2016;30: 1199–1214. doi:10.1002/2014GB004832.Received // LINK

Bach LT, Taucher J, Boxhammer T, Ludwig A, Achterberg EP, Algueró-Muñiz M, et al. Influence of Ocean Acidification on a Natural Winter-to-Summer Plankton Succession: First Insights from a Long-Term Mesocosm Study Draw Attention to Periods of Low Nutrient Concentrations. PLoS One. 2016;11: e0159068. doi:10.1371/journal.pone.0159068 // LINK

Xu J, Bach LT, Schulz KG, Zhao W, Gao K, Riebesell U. The role of coccoliths in protecting Emiliania huxleyi against stressful light and UV radiation. Biogeosciences. 2016;13: 4637–4643. doi:10.5194/bg-13-4637-2016 // LINK

Paul AJ, Achterberg EP, Bach LT, Boxhammer T, Czerny J, Haunost M, et al. No observed effect of ocean acidification on nitrogen biogeochemistry in a summer Baltic Sea plankton community. Biogeosciences. 2016;13: 3901–3913. doi:10.5194/bg-13-3901-2016 // LINK

Monteiro FM, Bach LT, Brownlee C, Bown P, Rickaby REM, Poulton AJ, et al. Why marine phytoplankton calcify. Sci Adv. 2016;2: e1501822–e1501822. doi:10.1126/sciadv.1501822 // LINK

Boxhammer T, Bach LT, Czerny J, Riebesell U. Technical Note: Sampling and processing of mesocosm sediment trap material for quantitative biogeochemical analysis. Biogeosciences. 2016;13: 2849–2858. doi:10.5194/bgd-12-18693-2015 // LINK

Almén AK, Vehmaa A, Brutemark A, Bach LT, Lischka S, Stuhr A, et al. Negligible effects of ocean acidification on Eurytemora affinis (Copepoda) offspring production. Biogeosciences. 2016;13: 1037–1048. doi:10.5194/bg-13-1037-2016 // LINK

Webb AL, Leedham-Elvidge E, Hughes C, Hopkins FE, Malin G, Bach LT, et al. Effect of ocean acidification and elevated fCO2 on trace gas production by a Baltic Sea summer phytoplankton community. Biogeosciences. 2016;13: 4595–4613. doi:10.5194/bg-13-4595-2016 // LINK

Nausch M, Bach LT, Czerny J, Goldstein J, Grossart HP, Hellemann D, et al. Effects of CO2 perturbation on phosphorus pool sizes and uptake in a mesocosm experiment during a low productive summer season in the northern Baltic Sea. Biogeosciences. 2016;13: 3035–3050. doi:10.5194/bg-13-3035-2016 // LINK


Bach LT, Riebesell U, Gutowska MA, Federwisch L, Schulz KG. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Prog Oceanogr. 2015;135: 125–138. doi:10.1016/j.pocean.2015.04.012 // LINK

Bach LT. Reconsidering the role of carbonate ion concentration in calcification by marine organisms. Biogeosciences. 2015;12: 4939–4951. doi:10.5194/bg-12-4939-2015 // LINK

Zhang Y, Bach LT, Schulz KG, Riebesell U. The modulating effect of light intensity on the response of the coccolithophore Gephyrocapsa oceanica to ocean acidification. Limnol Oceanogr. 2015;60: 2145–2157. doi:10.1002/lno.10161 // LINK

Paul AJ, Bach LT, Schulz K-G, Boxhammer T, Czerny J, Achterberg EP, et al. Effect of elevated CO2 on organic matter pools and fluxes in a summer Baltic Sea plankton community. Biogeosciences. 2015;12: 6181–6203. doi:10.5194/bg-12-6181/2015 // LINK

Larsen T, Bach LT, Salvatteci R, Wang Y V., Andersen N, Ventura M, et al. Assessing the potential of amino acid 13C patterns as a carbon source tracer in marine sediments: Effects of algal growth conditions and sedimentary diagenesis. Biogeosciences. 2015;12: 4979–4992. doi:10.5194/bg-12-4979-2015 // LINK


Zhang Y, Klapper R, Lohbeck KT, Bach LT, Schulz KG, Reusch TBH, et al. Between- and within-population variations in thermal reaction norms of the coccolithophore Emiliania huxleyi. Limnol Oceanogr. 2014;59: 1570–1580. doi:10.4319/lo.2014.59.5.1570 // LINK

Taucher J, Bach LT, Riebesell U, Oschlies A. The viscosity effect on marine particle flux: A climate relevant feedback mechanism. Global Biogeochem Cycles. 2014;28: 1–8. doi:10.1002/2013GB004728 // LINK

Sett S, Bach LT, Schulz KG, Koch-Klavsen S, Lebrato M, Riebesell U. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO2. PLoS One. 2014;9: e88308. doi:10.1371/journal.pone.0088308 // LINK


Bach LT, Mackinder LCM, Schulz KG, Wheeler G, Schroeder DC, Brownlee C, et al. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytol. 2013;199: 121–34. doi:10.1111/nph.12225 // LINK


Bach LT, Riebesell U, Sett S, Febiri S, Rzepka P, Schulz KG. An approach for particle sinking velocity measurements in the 3–400 μm size range and considerations on the effect of temperature on sinking rates. Mar Biol. 2012;159: 1853–1864. doi:10.1007/s00227-012-1945-2 // LINK

Bach LT, Bauke C, Meier KJS, Riebesell U, Schulz KG. Influence of changing carbonate chemistry on morphology and weight of coccoliths formed by Emiliania huxleyi. Biogeosciences. 2012;9: 3449–3463. doi:10.5194/bg-9-3449-2012 // LINK


Bach LT, Riebesell U, Schulz KG. Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnol Oceanogr. 2011;56: 2040–2050. doi:10.4319/lo.2011.56.6.2040 // LINK